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ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ 
УРАВНИВАНИЕ ГЕОДЕЗИЧЕСКИХ СЕТЕЙ 

Уравнивание. Уравнивание геодезических сетей является важнейшим этапом их созда-
ния. Основная задача уравнивания – получить однозначные результаты по отягощенным по-
грешностями измерениям, но исправленным в ходе обработки так, чтобы точность всех ве-
личин не понизилась, а наоборот, стала выше. Эта задача решается методом наименьших 
квадратов (МНК) [3, 4]. 
После уравнивания по методу наименьших квадратов точность измеренных величин все-

гда повышается [2, с. 231]. Важной характеристикой измерения является его вес, опреде-
ляющий степень доверия к измерению. Из формулы «среднего отношения весов» следует, что 
отношение весов P уравненных и p неуравненных результатов измерений в среднем опреде-
ляется отношением числа измеренных величин n к числу неизвестных k, что всегда больше 
единицы: 
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Первое изложение элементов МНК, как и его название, дал французский математик 
А.М. Лежандр (1752–1833). Дальнейшее развитие МНК получил в трудах немецкого ученого 
К.Ф. Гаусса (1777–1855), французского математика П.С. Лапласа (1749–1827), российских 
ученых П.Л. Чебышева (1821–1894), А.А. Маркова (1856–1922) и многих других. В этом на-
правлении продолжают плодотворно работать многие математики и геодезисты и в настоя-
щее время. 
Известно несколько способов уравнивания. Основными являются параметрический и кор-

релатный способы. Кроме них существуют и так называемые комбинированные способы, 
сочетающие достоинства упомянутых основных. 
Уравнивание может выполняться на плоскости, на эллипсоиде или в пространстве. В дан-

ной лекции, учитывая задачи и возможности курса, этот важнейший метод будет затронут 
лишь в очень ограниченных пределах. 

Точность измерений. Точность – важнейшая характеристика измерений. Мерой точности 
измерения является погрешность (ошибка) измерений1. Величина ошибки характеризует 
близость результатов измерений к их истинным значениям. Чем ошибка меньше, тем выше 
точность, тем результаты ближе к истинным значениям. 
В процессе измерений всегда участвуют субъект, проводящий эти измерения, технология 

измерений, включающая методы и приборы измерений, объект, свойства которого предсто-
ит выяснить в результате измерений, и внешняя среда, в которой проводятся измерения. Все 
они являются источниками ошибок. Основной тезис измерений – неизбежность ошибок. Ре-
зультаты любых измерений всегда отягощены ошибками. 

Принципы организации измерений. Борьба с погрешностями измерений основана на 
четырех принципах: ослабления, обнаружения, исправления и допуска погрешностей. 

• Принцип ослабления погрешностей предполагает меры по предотвращению или ос-
лаблению их влияний. Он основывается на выявлении и анализе источников погреш-

                                                           
1
В метрологии различают термины погрешность и ошибка. Погрешность измерения имеет и величину, и знак. 
Например, угол измерен с погрешностью -5”. Ошибка – случайное дискретное событие, которое может про-
изойти или не произойти. Например, при измерениях ногой задели треногу, на которой был установлен геоде-
зический прибор. В геодезии эти термины используются как синонимы. 
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ностей и предполагает глубокое знание факторов, влияющих на измерения. Исходя из 
этих знаний, организуются измерения и их обработка. 

• Принцип обнаружения погрешностей предполагает принятие мер по их выявлению. 
Для этого выполняются избыточные измерения. Например, угол измеряется не-
сколько раз, в треугольнике измеряют все три угла, отметку нового репера определя-
ют проложением нивелирных ходов от нескольких исходных реперов и т.п. При из-
быточности данных в геодезических сетях из-за погрешностей не выполняются гео-
метрические условия и возникают невязки . Невязки являются индикаторами нали-
чия погрешностей и объективными характеристиками точности измерений. 

• Принцип исправления погрешностей предполагает применение теорий, аппаратуры 
и технологий ослабления влияний или полное устранение обнаруженных ошибок. 
Этой же цели служит теория погрешностей и теория обработки результатов измере-
ний - уравнивание. Уравнивание можно выполнить только при наличии избыточ-
ных измерений. 

• Принцип допуска погрешностей. Всех погрешностей не избежать, не обнаружить и 
не исправить, а при исправлении могут возникнуть новые ошибки. Поэтому необхо-
димо сознательно и обоснованно установить допустимые пределы погрешностей, по 
превышении которых результаты измерений бракуются, а измерения выполняются 
заново. В связи с этим в геодезии важное место занимает теория оценки точности ре-
зультатов измерений (длин, углов, превышений) и функций от измеренных величин 
(уравненных значений координат, азимутов и длин линий). 

Погрешности измерений и их числовые характеристики. Погрешность – отклонение 
результата измерения от истинного значения измеряемой величины. 
По влиянию на результаты измерений различают: систематическую  и случайную  со-

ставляющие погрешности. Систематическая погрешность составляет ту часть погрешности 
измерения, которая при повторных измерениях одной и той же величины остается постоян-
ной или закономерно изменяющейся. Случайная погрешность – это составляющая погреш-
ности измерения, которая изменяется случайным образом при повторных измерениях одной 
и той же величины. Если погрешность измерений существенно превышает ожидаемую при 
данных условиях, то ее называют грубой погрешностью. 
Геодезические измерения всегда организуют так, чтобы грубые погрешности (описки, 

просчеты, нарушения технологии производства измерений и т. п.), а также, если это возмож-
но, и систематические погрешности были своевременно выявлены и исключены из результа-
тов измерений. Случайные погрешности неизбежны. Их влияние можно лишь ослабить, со-
вершенствуя приборы, методику, увеличивая количество и точность измерений, а также над-
лежащей математической обработкой результатов. 
Теория погрешностей измерений базируется на положениях теории вероятностей и мате-

матической статистики. Полагаем, что основные понятия этих дисциплин известны. Напом-
ним наиболее важные из них, ограничившись рассмотрением непрерывных случайных вели-
чин. 
На первый взгляд кажется, что для случайных погрешностей не существует какой-либо 

закономерности. В действительности они, как и другие случайные величины, подчинены оп-
ределенному статистическому закону распределения. Закон распределения представляют 
функцией распределения F(x) и ее производной ϕ(x), называемой плотностью распределения. 
Функция распределения определяет вероятность P того, что случайная величина X примет 
значение, меньшее некоторой заданной величины x: 



 
Б.Б. Серапинас  ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ  Уравнивание геодезических сетей    Лекция 9 

 122 

∫
∞−
ϕ=<=

x
dxxxXPxF )()()( , 

при условиях 

0)( ≥ϕ x   и  1)( =∫
+∞

∞−
ϕ dxx . 

Важнейшими числовыми характеристиками случайной величины являются математиче-
ское ожидание M(x) и дисперсия σ2. 
Математическое  ожидание определяет центр, около которого сосредоточены все 

возможные значения случайной величины. При наличии только случайных погрешностей 
оно определяет истинное значение измеряемой величины. Вычисляется математическое 
ожидание по формуле: 

∫
∞+

∞−
ϕ= dxxxxM )()( . 

Математическое ожидание обладает свойствами: 

( ) ccM = , где c – постоянная величина, 

( ) ( )xcMcxM = , 

( ) ( )∑∑ = iiii xMcxcM , где Σ – знак суммы, 

( ) ( )∏∏ = ii xMxM , где ∏ – знак произведения, 

( )( ) 0=− xMxM  – математическое ожидание уклонений от математического ожида-
ния равно нулю. 

Дисперсия  характеризует рассеяние возможных значений случайной величины относи-
тельно математического ожидания. В качестве меры рассеяния берут математическое ожида-
ние квадрата уклонения случайной величины от ее математического ожидания: 

( )22 ))(()( xMxMxD −==σ . 

Положительный квадратный корень из дисперсии называют средним квадратическим от-
клонением (СКО) или средней квадратической погрешностью (СКП): 

)(xD=σ . 

Дисперсия обладает следующими свойствами: 

( ) 0=cD , где c – постоянная величина, 

( ) ( )xDccxD 2= , 

( ) ( )∑∑ = iiii xDcxcD 2 , 

( ) ( )( )222 xMxM −=σ . 

Предельные  погрешности . Практически важно знать вероятность того, что погреш-
ность находится в определенных границах. С решением этой задачи связан вопрос установ-
ления допусков ∆пр на предельные погрешности измерений, по превышении которых изме-
рения следует браковать и выполнять их повторно. Допуск на абсолютные значения погреш-
ностей устанавливают по величине СКП, умноженной на некоторый коэффициент t: 

σ±=∆ tпр . 

Выбор коэффициента t основан на законе распределения случайных погрешностей. Слу-
чайные погрешности измерений ∆ характеризуются математическим ожиданием M(∆) = 0 и 
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дисперсией σ2. Они возникают вследствие влияния множества независимых факторов и по-
этому в большинстве случаев подчинены нормальному (Гаусса) закону распределения. Обо-
значив 

σ∆= /t , 

для плотности и функции нормального распределения соответственно получают: 

2/
2

1
)(

2t
et
−

π
=ϕ , 

2))/(1()( ttF Φ+= , 

где Φ(t) – интеграл вероятностей Лапласа, равный 

∫
−

π
=Φ

t
dt

t
et

0
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2

2
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2
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Интеграл удобно вычислять по следующей эмпирической формуле [1]: 

( ) ( )( )2028,0418,01794,0exp1 tttt ++−−=Φ . 

Эти формулы отражают известные свойства нормально распределённых случайных оши-
бок: 

• одинаковые по абсолютной величине положительные и отрицательные погрешно-
сти встречаются одинаково часто; 

• малые погрешности встречаются чаще больших; 
• среднее из погрешностей стремится к нулю при неограниченном возрастании их 
количества; 

• при заданных условиях измерений погрешности по абсолютной величине не пре-
восходят некоторого предела. 

Вероятность того, что погрешности по модулю не превысят заданного предела tσ, равна 
)()( ttP Φ=σ<∆ . 

На практике обычно пользуются коэффициентами t = 2; 2,5 и 3. Им соответствуют вероят-
ности Φ(t) = 0,954; 0,988 и 0,997. Погрешность ∆ > 3σ уверенно считают грубой: вероят-
ность такого события всего 0,003 – оно может произойти лишь в трех случаях из тысячи. В 
геодезии также принимают величины t = 2, и t = 2,5. 
Вес  измерения . Измерения подразделяют на равноточные и неравноточные. Неравно-

точные измерения сравнивают по величинам их весов. Вес p определяет степень доверия к 
результату. Его вычисляют по формуле: 

2/2 σσ= Op , 

где p и σ2 – вес и дисперсия измерения, σo
2 – параметр, выбирается произвольно, но так, что-

бы веса измерений стали близкими к единице. Если  p = 1, то дисперсия этого измерения 
становится равной параметру σo

2. Иными словами параметр равен дисперсии тех измерений, 
веса которых равны единице. Для краткости его 

называют дисперсией единицы веса. 
При подсчёте весов используют эмпирические дисперсии. Например, если уравнивают уг-

лы и длины сторон, измеренные соответственно с эмпирическими дисперсиями 2
βs  и 2

ss , то, 

приняв 22
β=σ so , для весов получают: 

22 /,1 ss sspp ββ == . 
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Как известно, при уравнивании, если измерения некоррелированы, минимизируется неко-
торая функция Ф, содержащая взвешенную (p) сумму квадратов поправок (v) в измерения: 

K++=Φ 2
22

2
11 vpvp  

Если поправки определены, тогда можно оценить и параметр σo
2. Для этого в функции Ф 

веса p следует заменить их выражениями и вынести за знак суммы дисперсию единицы веса: 
]/[][ 2222 σσ==Φ vpv o , 

где, в соответствии с символикой Гаусса, ломаные скобки обозначают сумму заключенных в 
них величин. В ломаных скобках безразмерные величины – отношения квадратов поправок к 
соответствующим им дисперсиям.  Такие суммы подчиняется распределению хи-квадрат χ2. 
Математическое ожидание этой суммы равно числу степеней свободы (n – k), где n –  число 
измеренных величин в сети,  k  –  число искомых неизвестных. Для дисперсии единицы веса 
получаем: 

)/(][ 22 knpvo −=σ . 

Веса удобны тем, что их можно определять по косвенным соображениям, не зная точных 
значений дисперсий.  
Дисперсии равноточных измерений одинаковы, их веса pi = 1. 
Оценки математических ожиданий и дисперсий. На практике точные значения мате-

матических ожиданий и дисперсий обычно неизвестны. Приходится пользоваться их 
оценками. Приведем формулы вычисления по результатам измерений оценок 
математического ожидания и дисперсии единицы веса. Оценкой математического ожидания 
неравноточных измерений является среднее весовое: 

 [ ] [ ]pxpx /= , 

Эту формулу можно сделать более удобной для вычислений. Введём нормированные веса, 
выберем наименьшее значение x0 из x и вычислим их разности ε: 

.,,]/[~
00 ε+=−=ε= xxxxppp ii  

Для среднего весового получаем: 

[ ] [ ] .1~,~
0 =ε+= ppxx  

Для n равноточных измерений (p = 1) среднее весовое становится средним арифметическим: 

[ ] n/xx = , 

[ ] ./0 nxx ε+=  

Оценки so
2 
дисперсии единицы веса σo

2 вычисляют в зависимости от имеющегося мате-
риала. Если известны истинное значение X, истинные погрешности ∆i = xi – X, число n изме-
рений xi, тогда 

[ ] n/pso
22 ∆= . 

Если истинное значение неизвестно, оценка выполняется по отклонениям vi текущего из-
мерения xi, число которых n, от среднего значения x: 

xxv ii −= . 

Тогда 
[ ] )1(/22 −ν= npso , 

[ ] [ ] [ ] [ ]( )222 ~~ ε−ε= ppppv . 

Вычисленные средние значения и дисперсии неизбежно содержат погрешности. Погреш-
ности в значенияхx  и  so

  оцениваются соответственно по формулам: 
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[ ] .)1(2/,/ −nsps oo  

О точности числовых характеристик судят также по доверительным интервалам, которые 
строят с близкой к единице вероятностью (1 – α). Для доверительных интервалов математи-
ческого ожидания и дисперсии единицы веса имеем: 

)/()()/( ∑∑ νν +<<− pstxxMpstx oo , 
2
2

222
1

2 /)1(/)1( χ−<σ<χ− nsns ooo , 

где ν = (n – 1) – число степеней свободы; tν – статистика распределения Стьюдента, выбира-
ется из таблиц по значениям ν и (1 – α); статистики распределения хи-квадрат выбирают из 
таблиц: χ1

2 по значениям ν и α/2, χ2
2 – по значениям ν и (1 – α/2).  

В табл. 9.1 даны выдержки из упомянутых таблиц при значении α = 0,05. 
Таблица 9.1 

Статистики распределений Стьюдента и χ2 

νννν 5 10 25 60 120 
tνννν 2,57 2,22 2,06 2,00 1,98 
χχχχ1

2 12,8 20,5 40,6 83,3 152,2 
χχχχ2

2 0,83 3,25 13,1 40,5 91,6 

Статистическую связь между случайными переменными Xi и Xj характеризует кова-
риация или  корреляционный момент σij. Он определяется математическим ожиданием 
произведений отклонений измеренных величин xi и xj от своих математических ожиданий: 

( )
( ),

,

jjj

iii

xMxv

xMxv

−=
−=

 

( )jiij vvM=σ . 

Часто статистическую связь между случайными величинами характеризуют безразмерным 
коэффициентом корреляции r: 

jiijijr σσσ= / . 

Отсюда, используя понятие веса, получают: 

jiijoijjiij pprr /2σ=σσ=σ . 

В этой формуле ковариация выражена через дисперсию единицы веса, коэффициент кор-
реляции и веса измерений. 
Оценку коэффициента корреляции получают, заменив математические ожидания и дис-

персии их оценками: 

( )( ) nssxxxxr jijjiiij /∑ −−= . 

Коэффициент корреляции находится в пределах -1 … +1. Чтобы выяснить, являются ли 
случайные величины в корреляционной зависимости, нужно проверить значимость коэффи-
циента корреляции. Для этого вычисляют статистику 

( ) ( )21/2 rnrt −−= . 

Эта величина t имеет распределение Стьюдента с ν = (n – 2) степенями свободы. По уров-
ню значимости α и числу ν находят по таблицам распределения Стьюдента статистику tνα , 
удовлетворяющую условию 
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( ) α=≥ ναttP . 

Если t ≥ tνα, то связь между переменными полагают существенной. 
Случайный вектор и его числовые характеристики. В геодезических измерениях име-

ют дело не с одной или двумя, а с системой из n случайных величин X1, X2, ..., Xn.  В совокуп-
ности они образуют n-мерный случайный вектор 

( )TnXXXX ,,, 21 K= . 

Элементами вектора являются, например, измеренные в геодезической сети углы, длины 
линий, превышения и другие величины. 
Обобщением понятия математического ожидания случайной величины является матема-

тическое ожидание случайного вектора 

( ) ( ) ( ) ( )( )TnXMXMXMXM ,,, 21 K= . 

Его элементами являются математические ожидания случайных величин. Обобщением 
понятий дисперсий и ковариаций является ковариационная матрица случайного вектора 

( )( ) ( )( )( )TXMXXMXMK −−= . 

Ковариационная матрица K имеет n строк и n столбцов. Она симметрична относительно 
главной диагонали. На этой диагонали расположены дисперсии, а вне диагонали – ковариа-
ции случайных величин: 

ijjiijiii KKK σ==σ= ,2 . 

На основании понятий о весах и коэффициентах корреляции ковариационную матрицу 
вектора представляют в виде 

122 −σ=σ= PQK oo . 

Матрицу Q называют матрицей обратных весов. Она симметрична относительно главной 
диагонали. Элементы на этой диагонали содержат обратные веса измерений, а недиагональ-
ные элементы – обратные веса и коэффициенты корреляции: 

jiijjiijiii pprQQpQ /;/1 === . 

Матрицу 
1−= QP  

называют матрицей весов. Если измерения некоррелированы, все r = 0, то матрицы Q и P 
диагональные. 
Ковариационные матрицы имеют большое значение для оценки точности функций от из-

меренных величин, например, полученных по результатам уравнивания значений координат, 
углов, длин и азимутов линий и др. После уравнивания эти величины уже являются функ-
циями всех измерений. Поэтому рассмотрим подробнее, как определить корреляционную 
матрицу этих функций. 
Предположим, некий вектор Y является линейной функцией случайного вектора X: 

bAXY += , 

где вектор b и матрица A имеют постоянные элементы. Если известна ковариационная мат-
рица KX случайного вектора X, то ковариационную матрицу KY вектора Y находят из выраже-
ния: 

( )( ) ( )( )( )T
Y YMYYMYMK −−= . 
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Но 
( ) ( ) ( ) bXAMbAXMYM +=+= . 

Отсюда следует 

( )( ) ( )( )( ) TT
Y AXMXXMXMAK −−= . 

Следовательно, 
T

XY AAKK = . 

Эта формула является одной из важнейших при оценках точности геодезических резуль-
татов. Применим её для вычисления дисперсии 2

Yσ  некоторой функции случайного вектора 

( )nXXXfY ,,, 21 K= . 

В общем случае эта функция нелинейная. Для ее приведения к линейному виду каждый её 
аргумент представляют в виде суммы постоянной (основной) и случайной (малой) частей: 

ioii vXX += . 

Функция раскладывается в ряд Тейлора, и сохраняется только линейная часть ряда: 

( ),,,,

,

21 onooo

o

XXXfY

AVYY

K=
+=

 

( ) .,,,

,,,,

21

2
2

1
1

T
n

n
n

vvvV

X

f
a

X

f
a

X

f
aA

K

K

=










∂
∂=

∂
∂=

∂
∂==

 

Число Yo – постоянная величина. Случайным является вектор V. Если матрица обратных 
весов случайного вектора V равна Q, то дисперсии функции Y равна 

T
oY AQA22 σ=σ . 

Параметрический способ уравнивания. Параметрический способ - один из основных. 
Пусть измерено n величин, по которым необходимо определить k неизвестных параметров. 
Уравнивание возможно, если число измеренных величин больше числа искомых параметров: 

kn > . 
При уравнивании параметрическим способом каждая измеренная величина должна быть 

записана в виде функции от определяемых параметров. Например, измеренное превышение 
между двумя реперами будет функцией высот этих реперов, а измеренное расстояние между 
двумя пунктами – функцией координат этих пунктов. В общем случае n-мерный вектор урав-
ненных измерений La представляют в виде явной функции k-мерного вектора уравненных 
значений параметров Xa: 

( )aa XFL = . 

С учетом поправок V в измеренные величины Lb и поправок dX в приближенные значения 
параметров X0 получают: 

( )dXXFVL ob +=+ . 

Если эта функция нелинейная, разложением в ряд Тейлора её приводят к линейному виду 
и получают n уравнений поправок: 

ldXAV += . 
Элементами матрицы A являются частные производные каждой функции уравнений по-

правок, а их n, по каждому параметру, число которых k: 
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( )kjni

oXjX
iF

ijaA ,,2,1,,,2,1, KK ==
∂

∂
==






























. 

Вектор l, свободный член, содержит разности вычисленных по приближенным параметрам 
значений измеряемых величин и их значений, полученных непосредственно из измерений: 

( ) bo LXFl −= . 
Пример. Составление этих уравнений поясним на примере нивелирной сети, когда проло-

жен нивелирный ход между пунктами i и k. Пусть приближенные высоты этих пунктов будут 
Hoi и Hok, а измеренное превышение – hik. Поправки из уравнивания в высоты и в превыше-
ние обозначим соответственно через dxi, dxk и vik. Очевидно, уравненное превышение между 
двумя реперами равно разности уравненных высот этих реперов: 

( ) ( )ioikokikik dxHdxHhv +−+=+ . 

Отсюда следует уравнение поправок 

ikkiik ldxdxv ++−= , 

( ) ikoiokik hHHl −−= . 

В геометрическом нивелировании дисперсия σ2 погрешностей превышений растет с рос-
том L  длины хода: 

L22 µ=σ . 

Допустимые невязки в нивелирных ходах оцениваются величинами Lµ (мм), где L – 

длина хода в километрах. Значения µ для нивелировок 1, 2, 3, 4 классов и  технического ни-
велирования соответственно равны 3, 5, 10, 20 и 50 миллиметрам на 1 километр хода. 
Вес измерения при длине нивелирного хода Lik вычисляется по формуле 

ik
LL

o
ik

p
c

=
µ

σ
=

2

2

.  

Если нивелирный ход проложен на местности с крутыми склонами и много нивелирных 
станций, то вес определяется формулой 

ik
n

c

ik
p = , 

где nik – количество нивелирных станций. 
В формулах для вычисления весов коэффициент c – произвольная величина. Она выбира-

ется, например, как среднее из значений длин нивелирных ходов, а при крутых склонах – 
среднее из числа установок нивелира. В этом случае значения весов становятся близкими к 1. 

Нормальные уравнения. В параметрическом случае уравнивания минимизации подлежит 
целевая функция 

PVVT=Φ . 
Её первая производная приравнивается нулю: 

022 ==
∂
∂=

∂
Φ∂

PAV
dX

V
PV

dX
TT . 

Отсюда следует важное для параметрического способа уравнение: 
0=PVAT . 

Из этого выражения, с учетом формулы для вычисления вектора V, получают систему так 
называемых нормальных уравнений: 

( ) 0=+ PlAdXPAA TT . 
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Их решением будет вектор поправок в параметры 

( ) PlAPAAdX TT 1−
−= . 

Исправленные значения параметров равны 
dXXX oa += . 

Поправки в измерения и исправленные значения измеренных величин равны 
VLLlAdXV ba +=+= , . 

В целях оценки точности получают: 
• выражение для дисперсии единицы веса 

kn

PVV T

o −
=σ2 , 

PVlPlVPVV TTT == , 
• формулу ковариационной матрицы параметров dX 

( ) 122 −σ=σ PAAQ T
odXo . 

Обратим внимание на следующее – матрица обратных весов искомых параметров QdX 
равна обратной матрице (ATPA)-1 коэффициентов нормальных уравнений. Отметим также, 
что матрица коэффициентов нормальных уравнений симметрична относительно главной 
диагонали: 

( ) ( )TTT PAAPAA = , 
что используется в качестве контроля при уравнительных вычислениях. 
Таким образом, алгоритм параметрического способа уравнивания сводится к вычислению 

приближенных значений параметров, вычислению коэффициентов уравнений поправок, эле-
ментов весовых или ковариационных матриц, составлению и решению нормальных уравне-
ний, исправлению найденными из уравнивания поправками приближенных значений пара-
метров и измеренных величин и оценке точности полученных результатов. 

Уравнивание многократной линейно-угловой засечки. В этой засечке (рис. 9.1) изме-
ряемой величиной является горизонтальный угол (β) между опорным направлением и на-

правлением на определяемый пункт (P) и расстояние (S) 
от опорного до определяемого пунктов. И расстояние, и 
угол могут быть измерены, например, электронным та-
хеометром. Угол и расстояние однозначно определяют 
искомые координаты пункта. Однако, если измерения 
повторить с нескольких опорных пунктов, образовать 
многократную линейно-угловую засечку, то к решению 
задачи необходимо привлечь метод наименьших квадра-
тов, и воспользоваться приведенными выше формулами 
параметрического уравнивания. 
Измеренные величины содержат погрешности, и по-

сле уравнивания их предстоит исправить поправками (v). 
Для решения задачи надо знать приближенные коорди-

наты определяемого пункта (x0, y0). Их можно найти, например, решением простой линейно-
угловой засечки, исполненной с одного опорного пункта. После уравнивания к приближен-
ным координатам будут получены поправки (δx, δy). Предположим, уравнивание выполнено 
и все поправки определены. Тогда для наблюдений, например, с опарного пункта 1(x1, y1), 
можно записать следующих два уравнения связи: 

Рис. 9.1. Многократная линейно-
угловая засечка 
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1
10

10
1111 arctg α−

−δ+
−δ+=α−α=β+β xxx

yyy
v P , 

( ) ( )2
10

2
1011 yyyxxxSvS −δ++−δ+=+ . 

Раскладывая в ряд Тейлора, нелинейные функции приводим к линейному виду. В случае 
измерения углов получаем: 

1
01

01

01

01
011111

cossin α−δα+δα−α=α−α=β+β y
S

x
S

v PP
PP , 

где через α01P обозначен дирекционный угол направления на определяемый пункт, вычис-
ленный по приближённым координатам. 
В этом уравнении поправка в угол получится в радианах. Представим её в угловых секун-

дах, умножив коэффициенты перед поправками в координаты на число секунд в радиане 
ρ″=206265. Свободный член в уравнении поправок тоже должен быть выражен в угловых се-
кундах. Предположим, что расстояния в данном примере составляют лишь сотни метров. 
Чтобы уменьшить величины коэффициентов, выразим расстояния в миллиметрах. Например, 
S1=436487 мм. Поправки в приближенные координаты искомого пункта также будут получе-
ны в миллиметрах. Для коэффициентов и свободного члена будем иметь: 

,cos
206265

,sin
206265

01
01

101
01

1 PP S
b

S
a α=α−=  

1111 β−α−α=β Pol . 

Уравнение поправок для угловых измерений примет вид: 

1111 ββ +δ+δ= lybxav . 

Напомним, что поправка в угол и свободный член выражены в секундах угла, а поправки в 
координаты – в миллиметрах. 
Аналогично следует поступить с линейными измерениями. После разложения функции в 

ряд Тейлора и обозначения через S01 расстояния, вычисленного по приближенным координа-
там, получим: 

y
S

yy
x

S

xx
SSvS δ−+δ−+=+

01

10

01

10
0111 . 

Обозначим коэффициенты и свободный член следующим образом: 

1011
01

10
011

01

10
011 ,sin,cos SSl

S

yy
s

S

xx
c SPP −=−=α=−=α= . 

Для уравнения поправок имеем: 

1111 SS lysxcv +δ+δ= . 

Поправка в расстояние и свободный член должны быть выражены в миллиметрах. 
Система уравнений поправок в матричной записи примет вид: 

ldXAV += . 

Для засечки рис. 9.1 имеем: 
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( ) ,,,,,, 321321
T

SSS vvvvvvV βββ=  

,
321321

321321





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
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sssbbb

сссaaa
AT     ,




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

δ
δ

=
y

x
dX  

( ) .,,,,, 321321
T

SSS lllllll βββ=  

Теперь предстоит разобраться с диагональной матрицей весов P. 
Подбору весов следует уделять серьёзное внимание. Веса определяют доли влияния раз-

ных измерений. Поправки в измерения будут вычисляться в соответствии с установленными 
весами. Поясним это на примере, не связанном с геодезией. Двоим предстоит разделить не-
кий доход. Доход будет разделён пропорционально весам, определяющим степень участия 
каждого. Вес одного 1, а вес второго 10. Второму достанется в десять раз больше, нежели 
первому. Если веса определены неправильно, то распределение дохода тоже будет неверным. 
Матрица весов P является диагональной (обозначена фигурными скобками): 

{ }321321 SSS ppppppP βββ= . 

 Вес для углового и линейного измерения определяется формулами: 

22 ,
S

S

c
p

c
p

σ
=

σ
=

β
β . 

В знаменателях весов выписаны дисперсии измерений углов и дисперсии измерений длин. 
Дисперсии обычно неизвестны, поэтому их вычисляют, используя эмпирические оценки 
СКО. В числителе находится произвольная безразмерная величина c [5, с. 96]. Она подбира-
ется так, чтобы веса были близки к единице. Если СКО измерения углов sβ = 5″, а СКО изме-
рения расстояний ss = 5мм, то надо принять с = 25, все веса станут равными единице. Для ве-
сов измеренных углов и длин линий будем иметь [2, с. 210]: 

( ) 2222 )(

1
1

25
,

"

1
1

25

ммs
p

s
p

S
S ====

β
β . 

Все дальнейшие вычисления выполняются по формулам параметрического уравнивания. 
Уравнивание нивелирной сети методом узлов. Применяется параметрический способ 

уравнивания, решаемый последовательными 
приближениями. При этом отпадает необхо-
димость в составлении и решении приведён-
ных выше уравнений. Для простоты рассмот-
рим уравнивание небольшой нивелирной сети 
(рис. 9.2). На чертеже заглавными буквами А, 
Л, С обозначены исходные пункты с извест-
ными высотами. Новые репера помечены рим-
скими цифрами I, II. Над (под) этими точками 

указаны отметки, найденные в процессе уравнивания. Между реперами проложены ходы гео-
метрического нивелирования. На рис. 9.2 подписаны длины ходов, и стрелками показаны 
направления положительных превышений. В табл. 9.2 приведены результаты вычислений. 
Рассмотрим последовательность обработки. 

1. Вычисления весов (при длине эталонного хода L0=0,43 км) и нормированных весов: 

ik
Lik

p
43,0

= ,  ]/[~ ppp ikik = . 

Рис. 9.2. Нивелирная сеть 
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Нормируют веса всех ходов, связанных с пунктом I и отдельно с пунктом II. По каждому оп-
ределяемому пункту сумма нормированных весов равна единице. 

Таблица 9.2 
Уравнивание нивелирного хода методом узлов 

Веса Приближения 

Репе-
ра 

Изме-
рен-
ные 

превы
шения 

h (м) 

p p~  H(1) H(2) H(3) H(4) 

Урав-
нен-
ные 

превы
шения 
h (м) 

V 
(мм) 

pV 
(мм) 

pV2 

А -28,958 1,00 0,33 145,781 781 781 781 -28,948 +10 +10 100 

Л +5,798 0,74 0,24 145,798 798 798 798 +5,791 -7 -5 35 

II +5,233 1,27 0,43 145,791 793 795 794 +5,230 -3 -4 12 
I 

Сумма 3,01 1,00 145,789 790 791 791   +1  

C -21,743 1,00 0,43 140,565 565 565 565 -21,747 -4 -4 16 

I -5,233 1,27 0,57 140,556 557 558 558 -5,230 +3 +4 – II 

Сумма 2,27 1,00 140,560 562 561 561   0 163 

2. Вычисление простейшими путями приближённых отметок каждого определяемого ре-
пера. Используются измеренные превышения. После этого все пункты будут иметь отметки. 

3. Последовательными приближениями для каждого определяемого репера вычисляются 
отметки со всех ближайших к нему пунктов. Для пункта I отметки будут вычислены с репе-
ров А, Л, II. Из этих трёх отметок вычисляется среднее весовое описанным выше способом: 

[ ] [ ] .1~,,~
00 =−=εε+= pHHpHH i  

После этого переходят к пункту II и повторяют выше указанные вычисления. Вновь воз-
вращаются к пункту I, и вычисляют новое среднее весовое значение, используя последний 
результат отметки для пункта II. Приближения повторяются до тех пор, пока не совпадут по 
всем определяемым пунктам результаты двух последних приближений. 

4. Выполняется оценка точности результатов уравнивания. Вычисляются по уравненным и 
исходным отметкам превышения h, и разности v уравненных и измеренных превышений. 
Для каждого определяемого пункта сумма [pv]=0. Вычисляется СКП единицы веса и СКП на 
1 км хода (n – число ходов, k – число узлов): 

00

2

0 /,
][

L
kn

pv σ=µ
−

=σ . 

В данном примере для этих величин получено соответственно 9 мм и 14 мм. 

Коррелатный способ уравнивания. Коррелатный способ практически применим к не-
большим сетям, когда в геодезической сети сравнительно просто сформировать геометриче-
ские условия. В большой сети условий очень много. Задача уравнивания существенно ус-
ложнится. Число условий определяется числом избыточно измеренных величин. 
Случайный n-мерный вектор уравненных результатов измерений La связан r условиями 

( ) 0=aLF . 
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Условия могут иметь нелинейный вид. Условия приводятся к линейному виду при помо-
щи матрицы частных производных B: 

( )n,,,j,r,,,i,

bLoXjL

iF
ijbB KK 2121 ==

∂

∂
==






























. 

 Получают так называемые условные уравнения и вектор невязок, вычисляемый по векто-
ру Lb результатов измерений: 

0=+ WBV , 
( )bLFW = . 

В геодезических сетях всегда предусматриваются избыточные измерения. Каждое избы-
точное измерение приводит к появлению геометрического условия и невязки. 
Приведем примеры условных уравнений. 
• В нивелирных сетях возникают условия двух видов: 

o в замкнутом полигоне сумма превышений должна равняться нулю; 
o в разомкнутом полигоне, проложенном между двумя исходными реперами, вы-
соты которых не подлежат исправлению, сумма превышений должна равняться 
разности высот этих реперов. 

• В триангуляции много условий. Рассмотрим лишь одно: в плоской замкнутой фигуре, 
в которой измерены все внутренние углы, возникает условие фигур. Суть условия в 
том, что сумма всех углов должна равняться их теоретическому значению. Например, 
в плоском треугольнике, в котором измерены все углы, их сумма должна равняться 
180°.  

• При использовании глобальных спутниковых систем позиционирования по измерени-
ям получают вектор, соединяющий наземные станции (базисный или пространствен-
ный вектор). Вид условных уравнений зависит от того, как проложен векторный ход. 

o Если этот ход образует замкнутый контур и все векторы ориентированы по ча-
совой стрелке (или против часовой стрелки), то их сумма равна нулю. Это озна-
чает, что суммы приращений координат по каждой координатной оси в замкну-
той фигуре равны нулю. 

o Когда ход разомкнут и проложен между векторами двух опорных пунктов, ко-
ординаты которых не подлежат исправлению, то сумма одинаково ориентиро-
ванных векторов должна равняться разности векторов этих опорных пунктов. 

Вследствие неизбежных погрешностей в измерениях геометрические условия не выпол-
няются. Возникают невязки. Например, если сумма измеренных углов в плоском 
треугольнике больше 180° на 10″, то возникнет невязка w = +10″. 
При коррелатном способе уравнивания минимизируется следующая функция Лагранжа: 

( )WBVKPVV TT +−=Φ 2 , 

где K – вектор коррелат (неопределённых множителей) 

Первая производная этой функции приравнивается нулю: 

022 =−=
∂
Φ∂

BKPV
V

TT . 

Отсюда 
KBPV T= . 

Для вектора поправок получают: 
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KBPV T1−= . 
Подставляя V в условные уравнения, получают систему нормальных уравнений: 

01 =+− WKBBP T . 

Из решения системы нормальных уравнений определяется вектор коррелат: 

( ) WBBPK T 11 −−−= . 

Зная вектор коррелат, вычисляют вектор поправок и исправляют измерения: 

VLL ba += . 

По исправленным измерениям вычисляют все искомые параметры. 
Для дисперсии единицы веса и ковариационной матрицы поправок в измерения при r из-

быточно измеренных величинах имеются формулы: 

r

PVV T

o =σ 2 , 

KWWKPVV TTT −=−= . 

Доказывается, что допустимая невязка в i-м условном уравнении определяется формулой: 

( ) ( )iiT
oi BBPtw 1

доп

−σ±= , 

где t = 2; 2,5 или 3; под квадратным корнем находится диагональный элемент i-й строки 
(столбца) матрицы коэффициентов нормальных уравнений. 
Чтобы оценить точность определяемых величин, например, высот искомых пунктов, не-

обходимо составить функцию их зависимости от уравненных величин:  

( )aLFF = . 

В общем случае такая функция является нелинейной. Её приводят к линейному виду раз-
ложением в ряд Тейлора и сохранением только линейной части ряда: 

002211 =++++ fvfvfvf nnL , 

где коэффициенты, вычисляемые по измеренным величинам, 

i
i L

F
f

∂
∂= . 

Дисперсия функции 
T

LF ffQ2
0

2 σ=σ ,   ( )nf,,f,ff K21= , 

( ) 11111 −−−−− −= BPBBPBPPQ TT
L . 

Видим, что точность уравненных величин больше точности измеренных величин, ибо 
1−< PQL . 

Таким образом, вычислительный алгоритм коррелатного способа уравнивания состоит из 
формирования геометрических условий, вычисления невязок, условных уравнений, элемен-
тов весовых или ковариационных матриц, нормальных уравнений, коррелат, поправок в из-
мерения, искомых параметров и оценки точности полученных результатов. 

Уравнивание нивелирной сети способом “красных чисел”.  Вариант коррелатного спо-
соба уравнивания. Уравнивание выполняется последовательным приближением без состав-
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ления и использования выше приведенных формул. Метод пригоден для обработки неболь-
ших нивелирных и плановых сетей. Изложим методику решения способом красных чисел. 

1. Работа начинается с составления схемы сети. Чертёж должен быть просторным и 
удобным для нанесения необходимых записей (рис. 9.3). 

2. На чертёж наносятся отметки исходных реперов (по завершении уравнивания туда 
выписываются и вновь найденные отметки новых реперов). Намечаются полигоны. Их 
число равно количеству избыточных измерений. В рассматриваемом случае имеются два 
разомкнутых полигона и должны быть сформулированы два условия. Чтобы лучше выде-
лить полигоны, опорные пункты следует соединить пунктирными линиями. Чертёж станет 
нагляднее; легче будет избежать ошибок при выборе направлений обхода полигонов. Ка-
ждый полигон будем обходить по часовой стрелке. Направления обхода на чертеже пока-
заны красными стрелками. У каждого нивелирного хода следует указать измеренные пре-
вышения. Знак превышений должен быть согласован с выбранным направлением обхода 
полигонов. Если направление нивелирного хода не совпадает с направлением обхода по-
лигона, то знак превышений следует изменить на противоположный. 

3. Следует вычислить невязки (w) для каждого полигона и выписать их в середине по-
лигонов. Под невязками нарисовать таблички. В них в ходе уравнивания будут записы-
ваться промежуточные значения невязок. 

4. Вычислить для каждого хода веса. В данном случае их следует заимствовать из при-
мера уравнивания 
этой же сети спосо-
бом узлов. Далее 
вычисляются об-
ратные веса. Об-
ратные веса норми-
руются так, чтобы 
по каждому поли-
гону сумма норми-
рованных весов 
равнялась единице. 
Эти вычисления 
приведены в 
табл. 9.3. 

5. Нормирован-
ные обратные веса 
следует выписать в 

чертёж у соответствующего нивелирного хода с внешней стороны полигона. Их выписы-
вают красным цветом, что и дало название способу уравнивания. Под красными числами 
заготавливается табличка, куда будут заноситься результаты вычислений. 

6. Далее идёт распределение невязок по ходам полигонов. Начинают с полигона, где 
наибольшая невязка. Невязку распределяют пропорционально красным числам и записы-
вают в эти заготовленные таблички. В табличке невязок пишется 0 в знак того, что в этом 
полигоне невязка ликвидирована. Переходят к следующему полигону, в данном случае к 
второму полигону. При распределении невязок в предыдущем полигоне в ходы, общие 
для двух полигонов, уже введена поправка. Поэтому её надо учесть и изменить невязку 
второго полигона. Новая невязка фиксируется в табличке невязок, и новая невязка второго 
полигона распределяется пропорционально красным числам этого полигона. Возвращаем-

Рис. 9.3. Уравнивание нивелирной сети способом “ красных чисел”  
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ся в первый полигон, находим его новую невязку и распределяем её пропорционально его 
красным числам. 
Процесс повторяется до получения нулевых невязок во всех полигонах. 

Таблица 9.3 
Вычисление обратных нормированных весов 
№ хо-
да Вес P 

Обратный 
вес 1/P 

Нормированные 
обратные веса 

1 0,74 1,30 0,56 
2 1,00 1,00 0,44 
ΣΣΣΣ - 2,30 1,00 
2 1,00 1,00 0,36 
3 1,27 0,79 0,28 
4 1,00 1,00 0,36 
ΣΣΣΣ - 2,79 1,00 

7. Вычисление поправок, уравненных превышений и отметок новых реперов. Во всех 
табличках красных чисел вычисляются суммы записанных в них чисел. Поправка для хо-
да, общего для двух полигонов, вычисляется как сумма таблички в своем полигоне минус 
сумма таблички в соседнем полигоне. Для остальных ходов поправка равна сумме таблич-
ки, взятой с обратным знаком. Поправки выписываются у ходов с внутренней стороны 
полигона. Алгебраическая сумма поправок в полигоне должна равняться невязке, взятой с 
обратным знаком. Измеренные превышения исправляются поправками. По исправленным 
превышениям вычисляются отметки новых реперов. Их выписывают на чертеже. Для кон-
троля вычисляют невязки по исправленным превышениям. Невязки должны быть нуле-
выми. 

8. Обработка завершается оценкой точности. В данном случае эти действия выполня-
ются тем же образом, что и в способе узлов параметрического уравнивания. 

Источники информации Лекции 9 

1. Баландин В.Н О вычислении интеграла вероятностей // Геодезия и картография. 1983. №6. С. 26–
27. 

2. Гайдаев П.А., Большаков В.Д. Теория математической обработки геодезических измере-
ний. - М., «Недра», 1969. – 400 с. 

3. Маркузе Ю.И, Голубев В.В. Теория математической обработки геодезических измерений. 
Учебное пособие для вузов. – М.: Академический проект: Альма Матер. 2010. –247 с. 

4. Машимов М. М. Уравнивание геодезических сетей. – М.: Недра, 1979. С. 21–52. 
5. Яковлев Н.В. Высшая геодезия. Учебник для вузов. - М.: Недра. 1989. - 445 с. 

Контрольные вопросы 

1. В чём суть формулы «среднего отношения весов»? 
2. В чём суть основного тезиса измерений? 
3. Принципы организации геодезических измерений. 
4. Допуск на значения погрешностей. Вес измерений. Дисперсия единицы веса. Ковариа-
ционная матрица случайного вектора. 

5. Суть параметрического способа уравнивания. 
6. Алгоритм уравнивания линейно-угловой засечки. 
7. Алгоритм уравнивания нивелирной сети способом узлов. 
8. Алгоритм коррелатного способа уравнивания. 
9. Чем определяется количество невязок в коррелатном способе уравнивания? 
10. Алгоритм уравнивания нивелирной сети способом “красных чисел”. 


